

Continuous Testing
Productivity increase through Continuous Testing.

By Bart de Best

Context:

This blog is derived from my experience as a DevOps trainer, coach, and auditor. Each

application of Continuous Testing has provided more insights into this powerful

concept. This blog describes both the success stories and the limitations.

Challenge:

The challenge of applying Continuous Testing is that the DevOps engineer has to

switch his mind to first write a test case and then the source code. Failure to apply

Continuous Testing can lead to defects being identified late in the CI/CD secure

pipeline, a low testing coverage rate, sacrifice of test time to programming time and

reduced performance due to a long search for the cause of the defects. The reward

for applying Continuous Testing can be up to 300% performance improvement for the

DevOps engineers.

Solution:

The solution to this challenge has been found in the concept of Continuous Testing in

which Test Driven Development is anchored. This blog discusses the TDD approach

to Continuous Testing based on the following steps:

1. Definition of Test-Driven Development (TDD)

2. Definition of Continuous Testing value stream

3. The method

4. The experiences

1. Definition of Test-Driven Development (TDD)

TDD is the core of Continuous Testing, the value stream that gives substance to test

management within DevOps. TDD is an approach aimed at integrating testing and

programming. This is based on the following principles:

- Shift left

- Test case first

- Incremental Iterative

- Unit test case

- Code driven testing

- Test automation

- Insulation

Shift left

TDD's method is aimed at executing 80% of the test cases in the development

environment in order to find 80% of the defects in the development environment (D).

As a result, only 20% of the test eSort remains in the test environment (T) and the

acceptance environment (A). The testing eSort therefore shifts from right to left in the

D-T-A-P street.

Test case first

The 'test case first' principle refers to the fact that a test case is first written and then

a small part of the source code that is just enough to successfully execute the test

case. As a result, the source code must be thought about before it is written.

Incremental Iterative

Instead of writing a unit (function, etc.) in one go and then testing it in one go, a unit is

built step by step, with each step starting with an additional test case. The

incremental and iterative nature of Agile Scrum is therefore extended to the writing of

source code. A new increment of the unit requires that all test cases are successfully

closed.

Unit test cases

TDD focuses on the smallest unit of programming, which is often a function written in

Python or Java, for example. This also makes the integration of testing and program-

ming possible.

Code driven testing

Unit test cases are programmed in the language of the source code. This means that

the test cases can also be included in GIT and provided with version management.

GIT also allows you to establish the relationship between the unit test cases and the

source code items. This means that checking out the source code in most editors also

checks out the test case so that both can be modified at the same time.

Test automation

The output of the unit test cases is mandatory with each increment by immediately

kicking oS the unit test cases after the build. The test run of unit test cases should not

take more than 5 minutes.

Isolation

The unit test case must be tested in isolation.

This means that it may not have any interfaces with databases, other applications,

network traSic, message queues, e-mail services, etc. The consequence is that

sometimes mocking or faking is necessary to put the unit under test through its paces.

2. Definition of the Continuous Testing value stream

An example of a Continuous Testing value stream is shown in Figure 1. TDD starts in

step 3 in which the unit test case (UT) is created.

That test case is executed in step 4 without any source code being written and

therefore fails in the first test run of the increment in question. The source code is then

written in step 5 and steps 4 and 5 are carried out until the test case has been

completed successfully. The source code is then cleaned up and a new increment of

the unit is started by writing the new unit test case in step 3.

Figure 1. Continuous Testing value stream.

The abbreviations in Figure 1 are:

- MT = Module Test

- SIT = System Integration Test

- ST = System Test

- FAT = Functional Acceptance Test

- UAT = User Acceptance Test

- SAT = Security Acceptance Test

- PAT = Production Acceptance Test

- PST = Performance Stress Test

2. The Way of Working

Figure 2 provides an overview of the TDD approach. On the left, the meta data of the

function is first written. The user story and requirement (BDD) were then named.

These are the basis for the source code.

Before starting to work on the source code, a list is first made of the problems that

need to be solved. The number of problems depends on the experience of the DevOps

engineer. An experienced DevOps engineer only mentions the considerations for

solutions and the choice made for the implementation. The steps describing the

function are then listed, followed by the pseudocode that describes how the function

should work.

3.
Create

UT, MT, SIT,
Pre-ST

4.
Run

Test case

5.
Create
& Build
code

6.
Refactor

code

1.
Determine
Test basis

2.
Determine

Test strategy

7.
Create ST,
pre FAT,
Pre UAT

Development Environment

Test
environment

8.
Create FAT,
UAT,PST,
SAT, PAT

Acceptance
environment

9.
Run

Smoke
Test

Production
environment

10.
Archive

Test ware

Archive

4 4

Figure 2, Example application of TDD.

In general, this definition takes about 15 minutes. However, it can save many times

more time during source code modification and bug fixing. On the right you can see

the unit test case in red and the source code in green. The syntax of the test case and

source code is of course incorrect and is only written this way as an indication of the

working method.

3. The experiences

Over the years I have had various experiences with TDD in the context of Continuous

Testing that I would like to share with you.

Own experiences

In six months I learned to program the Python language based on the book 'Think

Python' during a voluntary training outside working hours at a customer. The exercises

were quite tough and programming the solution directly often led to not being able to

complete the assignment in one evening. Until I applied TDD and wrote the

assignment step by step based on first writing the test case and then the source code.

In most cases this saved me a factor of 3 in time. The mistake I made in the beginning

was trying to write all the unit test cases and then write the source code. Not only was

it very diSicult to define all the unit test cases in advance, but it also did not provide

the feedback during programming that I needed to find a bug. Still, I was very stubborn

and tried many times to complete the assignment without TDD. After a few weeks I

finally left the old way of programming behind me and was able to go through my

learning curve much faster.

Training experiences

The advantage of TDD is sometimes discussed in training. These are always very nice

discussions and provide a clearer picture of the applicability of TDD. DiSicult

applications are:

Requirements
Unit testcases

Sourcecode
Meta data

T
e
s
t

D
ri

v
e
n
 D

e
v
e
lo

p
m

e
n
t

(T
D

D
)

B
e
h
a
v
io

u
r

D
ri
v
e
n
 D

e
v
e
lo

p
m

e
n
t

(B
D

D
)

• Meta
– Name

– Goal

– Author

– Creation date

• User Story
– I as an employee

Want to merge text and variables
So the I can merge my word docs with my

customer database

• Behaviour (BDD)
– Given the fact that I want to merge text

When I give the location of the text file
And the text of the subsequent placeholders

Then the function return the merged text

And send the text to the customer

• Problemsto solve
– Alternatives Solution

– Choice

• Program steps
– Define header

– Define variables

– Define merge function

– Define show

– Define send to customer

• Pseudocode
– Retrieve text from P1

– For all given parameters Px

- Search placeholder Px in P1

- Substitute placeholder with Px

– Print merged text on screen

– Send e-mail to user

Happy path testcase UT-01
Input: Functie <name>

p1=‘a’,p2=’b’,p3=’c’
Expected putput ‘’

Functie <name> p1=‘a’,p2=’b’,p3=’c’

Unittest Code.py
G

I
T
 V

1
.0

Happy path testcase UT-02
Input: Functie <name>

p1=‘a’,p2=’b’,p3=’c’
Expected putput ‘’

Functie <name> p1=‘a’,p2=’b’,p3=’c’

G
I
T
 V

1
.1

Happy path testcase U-03

Input: Functie <name>

p1=‘a’,p2=’b’,p3=’c’
Expected putput ‘’

Functie <name> p1=‘a’,p2=’b’,p3=’c’

G
I
T
 V

1
.2

Happy path testcase U-04

Input: Functie <name>
p1=‘a’,p2=’b’,p3=’c’
Expected putput ‘merged text’
Functie <name> p1=‘a’,p2=’b’,p3=’c’

G
I
T
 V

1
.3

Python Functie <name> p1,p2,3

End functie

Python Code.py

Python Functie <name> p1,p2,3
Statement declare

End functie

Python Functie <name> p1,p2,3
Statement declare
Statement text merge

End functie

Python Functie <name> p1,p2,3
Statement declare
Statement text merge

Statement show

End functie

1. User interface development.

It is diSicult to write a test case because the user interface is often not a

separate function but directly leads to an End-2-End test. TDD can be used,

but it is important to check whether the interface between the front-end and

the back end of the application is used. If the front-end calls a function from

the back end, the unit test case can be written against it.

2. Software that relies heavily on infrastructure services.

The software must be tested in isolation. In this case, mocking or faking must

be used. Developing this may include a significant amount of time spent. A

business case must therefore be considered.

3. Legacy software.

This is software whose code is often a monolith. This means that no individual

functions can be identified and that only system testing, and the like are

possible. Refactoring of the application should then be considered, such as

converting it to microservices. This can be a costly exercise that is mainly done

for applications that support the primary business value streams. It is true that

AI can greatly accelerate this.

4. Data intensive applications.

Applying TDD to applications whose logic is highly dependent on the data,

such as data analysis and machine learning, is diSicult. In that case, a number

of TDD principles may have to be compromised.

Coach experiences

The question in consultancy is often whether TDD can be applied optionally, i.e. if the

DevOps engineer considers this necessary. This is a cunning statement because the

risk of dilution of TDD is then constantly lurking.

That is why I recommend always doing TDD, unless, for example, the mocking is too

expensive, in which case TDD can still be done, but the TDD principles must be

handled flexibly.

Another experience is that the test management terms are not used in accordance

with common sense. For example, Selenium testing of the user interface is still

defined as unit test cases. This is not wise because it involves going through the entire

application. This blurring of terminology is treacherous in communication.

Audit experiences

I have had the opportunity to audit various organisations on Continuous Testing. A

discussion sometimes arises as to why TDD should be seen at level 2 of maturity on

the scale of 5 (CMM). Why isn't this level 3? The reason for this is that level 2 of the

CMM model indicates that the flow has been adjusted, i.e. the steps of the value

streams. TDD is the anchor here for Continuous Testing because it gives substance to

the shift left organisation. Omitting level 2 causes a completely diSerent flow without

fast feedback.

With TDD the quality of software development can be continuously monitored. The

unit test cases can also be used in regression testing. That is why TDD is a good

example of implementing Continuous Testing.

By Bart de Best

DutchNordic.Group

https://www.dbmetrics.nl/ce-en/continuous-testing-en/

