

Continuous Integration
Improve software quality with Continuous Integration.

By Bart de Best

Context:

This blog is derived from my experiences as a DevOps trainer, coach and auditor with

the concept of Continuous Integration. As a trainer, coach and auditor, I see many

variants of Continuous Integration applications. This blog describes my experiences

with this part of Continuous Everything.

Challenge:

The challenge of applying Continuous Integration is that it cuts deeply into the way

software programming works. This has been a diDicult part of quality management for

decades because every DevOps engineer wants to program in his or her own way and

derives energy from that. On the other hand, the quality of the software written by

DevOps engineers varies widely. For example, readability, maintainability, extensi-

bility, integrability, scalability, security, performance quality aspects are important

factors that play a role in the time-to-market and achieving SLA standards.

Continuous Integration focuses mainly on the integrability of the software of DevOps

engineers and the acceleration of the time-to-market by reducing waste.

Solution:

The solution to this challenge has been found in the concept of Continuous

Integration in which DevOps engineers share their programming work more times a

day and check whether they work well together. This blog discusses the concept of

Continuous Integration through the following steps:

1. The Definition

2. The principles

3. The method

4. The experiences

1. The definition

Continuous integration can be defined as follows:

Continuous Integration
Continuous Integration is a holistic Lean software development approach that aims
to produce and put into production continuous software in an incremental and
iterative manner, with waste reduction being a top priority.

The key words are Lean and continuous. The word 'Lean' refers to the reduction of

waste that arises, for example, from defects or incidents that are only discovered late

in the CI/CD secure Pipeline.

The word 'continue' refers to the aim of a smooth branch (making a local copy of

source code) and merge (merging with the central source code). This means that a

DevOps engineer can adjust or expand part of the software and that it can be easily

and without problems merged (integrated) with the rest of the software, even if it is

simultaneously modified or expanded by other DevOps engineers. If the branch leads

to merge conflicts, it is also referred to as merge hell. This means that it can be very

complex to merge the mutations and extra functionality. Compare it to a 1-page MS

Word document that has been edited by 20 reviewers and needs to be merged.

Software development projects have been stopped because solving merge hell would

take longer than reprogramming everything.

2. The principles

The following principles apply to Continuous Integration:

• Only small chunks of software are developed

• Locally isolated software development

• Use of a central (remote) version control repository

• High frequency of source code merges

• Short lifespan of a branch

Small chunks of software

With Continuous Integration, DevOps engineers work with small, manageable pieces

of software. This makes it easier to integrate changes and quickly identify and fix

problems.

Local

Every DevOps engineer has their own environment to work in. This enables them to

develop new features or fixes without directly impacting fellow DevOps engineers or

the stable version of the software. Software is only shared if it has been tested.

Central

A shared repository, such as GitHub, is used as the central source where all source

code comes together. This provides a single point of integration and facilitates

collaboration and change tracking.

Frequency

Merging changes frequently, such as several times a day, minimises or prevents

integration problems. This ensures that defects and conflicts are quickly discovered

and resolved.

Branch lifetime

Long branch lifespans can lead to complex merge conflicts and integration issues.

Short branch lifecycles promote rapid integration and reduce the likelihood of

discrepancies between diDerent chunks of source code.

3. The Way of Working

Figure 1 shows the value stream of Continuous Integration. Steps 1 to 6 are

completed cyclically.

Figure 1, Continuous Integration value stream.

The start of the value stream is Continuous Design (CN), which provides various

design objects as well as the requirements. Continuous Testing (CT) is the value

stream that plays an essential role in Continuous Integration (see also the Blog

Productivity increase through Continuous Testing). Finally, the application is

deployed and released by Continuous Deployment (CD).

Step 1. Check-out

The first step is to clone the source code stored in a central repository to a local

repository. Then a branch is created locally.

Step 2. Write Sourcecode

The DevOps engineer can now get started in his or her own repository. This means

that the change can only be seen locally by your own DevOps engineer and not by

colleagues.

Step 3. Check-in (local commit)

The local commit means that the DevOps engineer merges the change in the branch

into the software in the local repository.

Step 4. Compile

The compilation step translates the source code into object code. This allows the

application to be executed locally. This allows the application to be tested using

Continuous Testing. Steps 1, 2, 3, 4 are repeated until the test cases are successful.

Step 5. Refactoring

The source code is cleaned up and auxiliary source code (scaDolding) is removed.

Step 6. Check-in (remote commit)

Finally, the location repository is synchronised with the central repository. This is the

moment of integration. If this integration happens more than once a day, it is called

Continuous Integration.

4. The experiences

2.
Write

Sourcecode

4.
Compile

Objectcode

5.
Refactor

Code

1.
Check-out

(Pull)

Development environment

CT

CT

3.
Check-in

(Local
Commit)

CT

CO

Working
Directory
/

Staging area

/.git/index

Local
Repository
/.git/

Remote

Repository

11.

GIT Add

13.

GIT Push

10.

GIT Pull

12.

GIT Commit

CD
6.

Check-in
(Remote
Commit)

Over the years I have had various experiences with Continuous Integration that I

would like to share with you.

Own experiences

Working locally on source code gives a safe feeling because no work from colleagues

can be lost. The tendency is that you focus so much on the realisation of the design

and requirements that you forget to check whether everything works together with

what others are making.

The use of pair programming where two DevOps engineers work together behind the

screen to write software ensures a large reduction in errors. One DevOps engineer

types software while the other indicates what needs to be coded. This does not

detract from the requirement for a high degree of integration.

Merging into the central repository does require that system integration tests and

system tests are simultaneously performed that test the entire application. If this is

not the case, everyone should stop programming until the build and subsequent

testing are successful. This is called recovering from a broken build. Allowing

everyone to cooperate also creates a positive learning eDect on which mistakes

should be avoided.

Training experiences

Discussions often take place in training as to whether it is necessary to integrate

often. Especially if you use microservices for which the interfaces are defined, and

colleagues can use mocking to simulate each other's microservices. This is indeed a

situation where fewer conflicts will arise in the event of a merge. But the operation of

the application is more than software compatibility. The behavior of the diDerent

parts of the application and the way in which information is processed also requires

good and high-frequency integration.

Audit experiences

During audits I notice that questions regarding branching and merging often lead to

discussions. DevOps teams often appear to not have a well-defined development

process. It is then more the discretion of the DevOps engineer.

One DevOps engineer has a high merge frequency, and another doesn't merge

anything for days or weeks. This is of course not what is meant by Continuous

Integration. The entire DevOps team working on an application must adhere to the

principles and the Continuous Integration value stream to be successful.

With this application of Continuous Integration it is possible to continuously

determine whether the application is functioning properly, and errors are quickly

found and can also be resolved quickly. This also allows the frequency of deployment

to be increased. That is why this method of software development is a good example

of the application of Continuous Integration.

By Bart de Best

DutchNordic.Group

https://www.dbmetrics.nl/ce-en/continuous-integration-en/

